The priority development direction of the Rostov region as the largest agricultural producer of Russia is the creation of modern, competitive processing industries. Since the beginning of 2015, despite record harvests of cereals, the wheat flour cost has been steadily increasing and now exceeds the peak values for the previous period from 2008 to 2015. This caused by the high share of payment for consumed electricity in the production costs, which is approximately 30%, and significant increase in tariffs for it in the last 10-12 years due to unjustifiably high costs of equipment maintenance and operation in grid companies, liquidation of cross-subsidizing prices, as well as rising gas prices. Under conditions of the existing high solar energy potential in the territory of the South of the country, the implementation of technologies for its transformation into electricity will reduce energy costs and, consequently, reduce the costs of produced goods and services. The purpose of the presented research was to determine the composition and parameters of the equipment of a solar electrical power plant that provides energy to the lighting system of the flour milling section No. 1 and No. 2 of the processing plant Ltd. "Rostovremagroprom" in Zernograd of the Rostov Region, taking into account the assessment of the solar radiation intensity during the year, the structural features of the building roof and features of the company's load graph. Full solar energy potential (1246.87 kWh/m²) is possible to realize at the facility partly due to the existing technical limitations imposed by the building roof construction. The design and implementation of economically feasible additional power supply system for the lighting system of the flour-milling departments of the enterprise excludes the usage of accumulating devices, allowing to reduce the annual costs for the payment of consumed electricity by approximately 45 thousand rubles by decreasing the cost of each 1 kilowatt-hour of consumed electricity from 8.1 rubles/kWh to 3.6 rubles/kWh during the period of intense activity of the Sun.