Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Sustainable and inventive city design is becoming more and more dependent on the use of cutting-edge technology as smart cities develop further. Energy efficiency optimization in residential structures is an essential part of the puzzle as it helps conserve resources and keeps the planet habitable. An enhanced Deep Neural Network (DNN) model for household energy efficiency predictions is presented in this research. Our model uses a large dataset of building features, weather, occupancy patterns and energy usage histories. Data is preprocessed, features are engineered and hyperparameters are tweaked to improve DNN prediction. Scalable, easy-to-understand models are essential, as are shifting urban areas and energy landscapes. In this work, the authors have evaluated the proposed model with basic model with different optimizers. Initially, the Stochastic Gradient Descent optimizer applied that gained 91.02% Recall, 93.47% Precision, 93.28% F1-Score, 0.0153 MSE, 0.0166 RMSE and 0.0165 MAE. The proposed model gained 99.52% Recall, 98.91% Precision, 99.09% F1-Score, 0.0140 MSE, 0.0137 RMSE and 0.0139 MAE. By monitoring, analyzing and making decisions in real time, smart city systems can help planners understand energy usage trends. The optimized DNN model advances smart city development by promoting sustainability and resource optimization. Predicting residential buildings’ energy efficiency provides proactive energy savings, cost reduction and environmental impact mitigation. The suggested DNN model shows how smart cities use cutting-edge urban planning to become more sustainable, efficient and resilient.
Sustainable and inventive city design is becoming more and more dependent on the use of cutting-edge technology as smart cities develop further. Energy efficiency optimization in residential structures is an essential part of the puzzle as it helps conserve resources and keeps the planet habitable. An enhanced Deep Neural Network (DNN) model for household energy efficiency predictions is presented in this research. Our model uses a large dataset of building features, weather, occupancy patterns and energy usage histories. Data is preprocessed, features are engineered and hyperparameters are tweaked to improve DNN prediction. Scalable, easy-to-understand models are essential, as are shifting urban areas and energy landscapes. In this work, the authors have evaluated the proposed model with basic model with different optimizers. Initially, the Stochastic Gradient Descent optimizer applied that gained 91.02% Recall, 93.47% Precision, 93.28% F1-Score, 0.0153 MSE, 0.0166 RMSE and 0.0165 MAE. The proposed model gained 99.52% Recall, 98.91% Precision, 99.09% F1-Score, 0.0140 MSE, 0.0137 RMSE and 0.0139 MAE. By monitoring, analyzing and making decisions in real time, smart city systems can help planners understand energy usage trends. The optimized DNN model advances smart city development by promoting sustainability and resource optimization. Predicting residential buildings’ energy efficiency provides proactive energy savings, cost reduction and environmental impact mitigation. The suggested DNN model shows how smart cities use cutting-edge urban planning to become more sustainable, efficient and resilient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.