Abstract. The continuous development of new proxies as well as a refinement of existing tools are key to advances in paleoclimate research and improvements in the accuracy of existing climate reconstructions. Herein, we build on recent methodological progress in dendroanatomy – the analyses of wood anatomical parameters in dated tree rings – and introduce the longest (1585–2014 CE) dendroanatomical dataset currently developed for North America. We explore the potential of dendroanatomy of high-elevation Engelmann spruce (Picea engelmannii) as a proxy of past temperatures by measuring anatomical cell dimensions of 15 living trees from the Columbia Icefield area. There, X-ray maximum latewood density (MXD) and its blue intensity counterpart (MXBI) have previously been measured, which allows comparing the different parameters. Our findings highlight anatomical MXD and maximum radial cell wall thickness as the two most promising wood anatomical proxy parameters for past temperatures, each explaining 46 % and 49 %, respectively, of instrumental, high-pass filtered, July–August maximum temperatures over the 1901–1994 period. While both parameters display comparable climatic imprinting at higher frequencies to X-ray derived MXD, the anatomical dataset distinguishes itself from its predecessors by providing the most temporally stable warm-season temperature signal. For the long-term secular trends, discrepancies between anatomical MXD and maximum radial cell wall thickness chronologies were observed, where the former more closely follow the long-term variations of the X-ray based MXD. Further studies, including samples from more diverse age cohorts and the adaptation of RCS-based standardizations, are needed to disentangle the ontogenetic and climatic components of long-term signals stored in the wood anatomical traits and to more comprehensively evaluate the potential contribution of this new dataset to paleoclimate research.