In road traffic crashes, although rollover crashes account for a relatively low proportion, those result in a high fatality rate. The present study performed random parameters ordered logit models to examine risk factors as well as their heterogeneous effects on driver injury severity in single-vehicle passenger car and SUV rollover crashes. Crash data for the empirical analysis were extracted from Texas Crash Record Information System (CRIS) database during the year 2016. Model estimation results show that six variables (male drivers, drivers’ age, airbag deployment, failure to drive in single lane, speed limit, and rural area) were found to produce normally distributed parameters in passenger car model, while nine parameters (male drivers, safety belt use, airbag deployment, drug or alcohol use, failure to drive in single lane, improper evasive action, vehicle model year, friday, and rural area) in SUV model were found to be normally distributed. Several other factors with fixed parameters were found to be associated with driver injury severity in single-vehicle passenger car or SUV rollover crashes, most notably: ejection or partial ejection, turning left, intersection, August, adverse weather conditions, and night with light. These variables were significant in both models; most variables have stronger effects on nonincapacitating injury and serious injury outcomes in SUV than in passenger car rollover crashes. These findings provide a deep insight into causality nature and factor involved in driver injury severity in single-vehicle passenger car and SUV rollover crashes and are also helpful for transport agencies to determine appropriate countermeasures aimed at mitigating injuries sustained by drivers in single-vehicle rollover crashes.