Precise fit of a crown and accurate reproduction of the digital design are paramount for successful treatment outcomes and preservation of clinician and technician time. The study aimed to compare the internal fit, marginal adaptation, precision, and trueness of 3D-printed zirconia crowns compared to their milled counterpart. A total of 20 monolithic 3 mol% yttria stabilized-zirconia crowns (n = 10) were made using computer-assisted design (CAD) followed by additive (3D-printed) and subtractive (milled) manufacturing. Digital scanning of the master die with and without a fit checker followed by image superimposition, and analysis was performed to evaluate internal and marginal adaptation in four areas (occlusal, axial, marginal, and overall). ISO 12836:2015 standard was followed for precision and trueness evaluation. Statistical analysis was achieved using a t-test at α = 0.05. Internal fit and marginal adaptation revealed no significant difference between the two test groups (p > 0.05). The significant difference in trueness (p < 0.05) was found between the two groups in three areas (occlusal, axial, and internal). The best and worst trueness values were seen with 3D-printed crowns at occlusal (8.77 ± 0.89 µm) and Intaglio (23.90 ± 1.60 µm), respectively. The overall precision was statistically better (p < 0.05) in the 3D-printed crowns (9.59 ± 0.75 µm) than the milled (17.31 ± 3.39 µm). 3D-printed and milled zirconia crowns were comparable to each other in terms of internal fit and marginal adaptation. The trueness of the occlusal and axial surfaces of 3D-printed crowns was better, whereas the trueness of fitting surface of milled crowns was better. 3D-printed crowns provided a higher level of precision than milled crowns. Although the internal and marginal fit of both production techniques were comparable, 3D printing of zirconia produced more precise crowns.