The influences of airborne trace elements in urban dust on element concentrations and functional traits of Tilia cordata were examined. For the present study, the unwashed and washed leaves of T. cordata were collected to assess the concentration of metals in Katowice City, Poland, from sites of different traffic intensity and industry activity. The content of Al, Cd, Cr, Cu, Fe, Mn, Pb, Zn, C, and N was measured. Additionally, a number of functional traits such as photosynthetic pigment content, specific leaf area (SLA), leaf dry matter content (LDMC), and diseased areas of the leaves were determined to assess the impact of the polluters on the physiology of the trees and their resources acquisition strategy. We hypothesized that the photosynthetic pigments of T. cordata will decrease with the traffic and industry intensity, and the traits related to the resources acquisition and stress resistance will shift into a more conservative strategy. The Principal Component Analysis and the Inverse Distance Weighting (IDW) interpolation method helped to identify that the Fe, Zn, Al, and Cr were related mainly to traffic intensification and Pb to industrial activities. The results indicate that Katowice is considerably polluted by Zn (up to 189.6 and 260.2 mg kg−1 in washed and unwashed leaves, respectively), Pb (up to 51.7 and 133.6 mg kg−1), and Cd (up to 2.27 and 2.43 mg kg−1) compared to other cities worldwide. Also, a reduction of approximately 27% in the photosynthetic pigments was observed at the high-traffic and industrial sites. The trees from the mainly affected areas with heavy traffic and industry tend to apply a conservative resources strategy with a decrement in SLA and an increment in LDMC. In contrast, the opposite trend was observed at the less affected sites (high SLA, low LDMC). The study showed that unfavourable urban conditions can trigger a plastic response on multiple levels. Knowledge of the possible paths of adaptation to urban conditions of different plant species is nowadays crucial to appropriate urban greenery planning.