Background and Objectives
Envafolimab is the first and only globally approved subcutaneously injectable PD-L1 antibody for the treatment of instability-high (MSI-H) or DNA mismatch repair deficient (dMMR) advanced solid tumors in adults, including those with advanced colorectal cancer that has progressed after treatment with a fluoropyrimidine, oxaliplatin, and irinotecan. The aim of this investigation was to examine the pharmacokinetic and exposure-response (E-R) profile of envafolimab in patients with solid tumors to support the approval of fixed and alternative dose regimens.
Methods
In this study, a population pharmacokinetic (PopPK) modeling approach will be employed to quantitatively evaluate intrinsic and extrinsic covariates. Additionally, PopPK-estimated exposure parameters were used to evaluate E-R relationship for safety and efficacy to provide a theoretical basis for recommending optimal treatment regimens. Simulations were performed on the dosing regimens of body weight-based regimen of 2.50 mg/kg QW, fixed dose 150 mg QW, and 300 mg Q2W for the selection of alternative dosing regimens. Data from 4 clinical studies (NCT02827968, NCT03101488, NCT03248843, and NCT03667170) were utilized.
Results
The PopPK dataset comprised 182 patients with 1810 evaluable envafolimab concentration records. Finally, a one-compartment model incorporating first-order absorption, first-order linear elimination, and time-dependent elimination according to an Emax function was found to accurately describe the concentration-time data of envafolimab in patients with advanced solid tumors. Creatinine clearance and country were identified as statistically significant factors affecting clearance, but had limited clinical significance. A relative flat exposure-response relationship was observed between early measures of safety and efficacy to verify that no dose adjustment is required. Simulation results indicated that 2.50 mg/kg QW, 150 mg QW, and 300 mg Q2W regimen yield similar steady-state exposure.
Conclusions
No statistically significant difference was observed between weight-based and fixed dose regimens. Model-based simulation supports the adoption of a 150 mg weekly or 300 mg biweekly dosing regimen of envafolimab in the solid tumor population, as these schedules effectively balance survival benefits and safety risks.