“…Finally, each network was re-trained on the selected settings using the train and validation data together for each drug. We used Adagrad for optimizing the parameters of AITL and the baselines (Iorio et al, 2016) cell line Bortezomib targeted source 391 11609 GSE18864 (Silver et al, 2010) clinical trial Cisplatin Chemotherapy target 24 11768 GSE23554 (Marchion et al, 2011) clinical trial Cisplatin Chemotherapy target 28 11768 TCGA (Ding et al, 2016) patient Cisplatin Chemotherapy target 66 11768 GDSC (Iorio et al, 2016) cell line Cisplatin Chemotherapy source 829 11768 GSE25065 (Hatzis et al, 2011) clinical trial Docetaxel Chemotherapy target 49 8119 GSE28796 (Lehmann et al, 2011) clinical trial Docetaxel Chemotherapy target 12 8119 GSE6434 (Chang et al, 2005) clinical trial Docetaxel Chemotherapy target 24 8119 TCGA (Ding et al, 2016) patient Docetaxel Chemotherapy target 16 8119 GDSC (Iorio et al, 2016) cell line Docetaxel Chemotherapy source 829 8119 GSE15622 (Ahmed et al, 2007) clinical trial Paclitaxel Chemotherapy target 20 11731 GSE22513 (Bauer et al, 2010) clinical trial Paclitaxel Chemotherapy target 14 11731 GSE25065 (Hatzis et al, 2011) clinical trial Paclitaxel Chemotherapy target 84 11731 PDX (Gao et al, 2015) animal (mouse) Paclitaxel Chemotherapy target 43 11731 TCGA (Ding et al, 2016) patient Paclitaxel Chemotherapy target 35 11731 GDSC (Iorio et al, 2016) cell line Paclitaxel Chemotherapy source 389 11731 * Number of genes in common between the source and all of the target data for each drug (Duchi et al, 2011) implemented in the PyTorch framework, except for the method of (Geeleher et al, 2014) which was implemented in R. We used the author's implementations for the method of (Geeleher et al, 2014), MOLI, PRECISE, and ProtoNet. For ADDA, we used an existing implementation from https://github.com/jvanvugt/ pytorch-domain-adaptation, and we implemented the method of (Chen et al, 2017) from scratch.…”