Evaluating the performance of hyperparameters for unbiased and fair machine learning
Vy Bui,
Hang Yu,
Karthik Kantipudi
et al.
Abstract:Biased outcomes in machine learning models can arise due to various factors, including limited training data, imbalanced class distribution, suboptimal training methodologies, and overfitting. In training neural networks with Stochastic Gradient Descent (SGD) and backpropagation, the choice of hyperparameters like learning rate and momentum is crucial to influencing the model's performance. A comprehensive grid search study was conducted using static hyperparameters with standard SGD and dynamic hyperparameter… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.