Data on diagnosis of infection in the general population are strategic for different applications in the public and private spheres. Among them, the data related to symptoms and people displacement stand out, mainly considering highly contagious diseases. This data is sensitive and requires data privacy initiatives to enable its large-scale use. The search for population-monitoring strategies aims at social tracking, supporting the surveillance of contagions to respond to the confrontation with COVID-19. There are several data privacy issues in environments where IoT devices are used for monitoring hospital processes. In this research, we compare works related to the subject of privacy in the health area. To this end, this research proposes a taxonomy to support the requirements necessary to control patient data privacy in a hospital environment. According to the tests and comparisons made between the variables compared, the application obtained results that contribute to the scenarios applied. In this sense, we modeled and implemented an application. By the end, a mobile application was developed to analyze the privacy and security constraints with COVID-19.