In most countries local roads (i.e., urban and rural) form over 80% of the entire road network and constitute the country's largest asset value. In order for local roads to remain fit for purpose and maintain their value, they require periodic maintenance. To make the best use of scarce maintenance resources, road maintenance needs to be preventative which requires the condition of the road to be assessed periodically. Traditional road surveys suffer from the lack of repeatability and reproducibility, are high cost and time consuming. This work proposes a vehicle mounted point laser system for the automated, rapid and inexpensive measurement of a major mode of local road deterioration, namely fretting. Compared to other technologies such as Ground Penetrating Radar (GPR), visual sensors and the Mobile Laser Scanning (MLS) system, the point laser requires less computational power, is less sensitive to the surrounding environment and is of comparatively low cost. A robust approach is proposed which consists of a number of pre-processing algorithms to deal with noise and the effects of the vehicles dynamic motion, and a signal processing algorithm which analyses histograms of the distance from the road surface measured by the laser to account for changes in road texture. Road fretting measured by the proposed system on a variety of roads is compared with fretting determined using a standard visual assessment process. The results indicate that the proposed system can measure road fretting to the levels of detail which are suitable for planning, programming and preparations road management functions.