The objective of this study was to evaluate the operability for a competition wheelchair by estimating biomechanical parameters during the forward linear operation of a wheelchair using an inverse dynamics analysis. During operation of the wheelchair, the vector of ideal hand force in the posture of the arm was calculated using the reaction force between the hand and the wheel. Hand manipulability was defined as the angles between its vector and the vector of hand force estimated from the simulation. The effects of the design parameters for the wheelchair on manipulability were investigated by conducting simulations with changes in axle positions. As a result, it may be effective to set the axle to higher positions to increase the energy efficiency of the upper limbs during operation of the wheelchair. This indicates that adjustment of the axle position leads to improvement of operability of the wheelchair.