Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background Somatostatin receptor (SSR) targeting radiotracer 68Ga-DOTATATE is used for Positron Emission Tomography (PET)/Computed Tomography (CT) imaging to assess patients with Pheochromocytoma and paraganglioma (PPGL), rare types of Neuroendocrine tumor (NET) which can metastasize thereby becoming difficult to quantify. The goal of this study is to develop an artificial intelligence (AI) model for automated lesion segmentation on whole-body 3D DOTATATE-PET/CT and to automate the tumor burden calculation. 132 68Ga-DOTATATE PET/CT scans from 38 patients with metastatic and inoperable PPGL, were split into 70, and 62 scans, from 20, and 18 patients for training, and test sets, respectively. The training set was further divided into patient-stratified 5 folds for cross-validation. 3D-full resolution nnUNet configuration was trained with 5-fold cross-validation. The model’s detection performance was evaluated at both scan and lesion levels for the PPGL test set and two other clinical cohorts with NET (n = 9) and olfactory neuroblastoma (ONB, n = 5). Additionally, quantitative statistical analysis of PET parameters including SUVmax, total lesion uptake (TLU), and total tumor volume (TTV), was conducted. Results The nnUNet AI model achieved an average 5-fold validation dice similarity coefficient of 0.84 at the scan level. The model achieved dice similarity coefficients (DSC) of 0.88, 0.6, and 0.67 at the scan level, the sensitivity of 86%, 61.13%, and 61.64%, and a positive predictive value of 89%, 74%, and 86.54% at the lesion level for the PPGL test, NET and ONB cohorts, respectively. For PPGL cohorts, smaller lesions with low uptake were missed by the AI model (p < 0.001). Anatomical region-based failure analysis showed most of the false negative and false positive lesions within the liver for all the cohorts, mainly due to the high physiologic liver background activity and image noise on 68Ga- DOTATATE PET scans. Conclusions The developed deep learning-based AI model showed reliable performance for automated segmentation of metastatic PPGL lesions on whole-body 68Ga-DOTATATE-PET/CT images, which may be beneficial for tumor burden estimation for objective evaluation during therapy follow-up. https://www.clinicaltrials.gov/study/NCT03206060, https://www.clinicaltrials.gov/study/NCT04086485, https://www.clinicaltrials.gov/study/NCT05012098.
Background Somatostatin receptor (SSR) targeting radiotracer 68Ga-DOTATATE is used for Positron Emission Tomography (PET)/Computed Tomography (CT) imaging to assess patients with Pheochromocytoma and paraganglioma (PPGL), rare types of Neuroendocrine tumor (NET) which can metastasize thereby becoming difficult to quantify. The goal of this study is to develop an artificial intelligence (AI) model for automated lesion segmentation on whole-body 3D DOTATATE-PET/CT and to automate the tumor burden calculation. 132 68Ga-DOTATATE PET/CT scans from 38 patients with metastatic and inoperable PPGL, were split into 70, and 62 scans, from 20, and 18 patients for training, and test sets, respectively. The training set was further divided into patient-stratified 5 folds for cross-validation. 3D-full resolution nnUNet configuration was trained with 5-fold cross-validation. The model’s detection performance was evaluated at both scan and lesion levels for the PPGL test set and two other clinical cohorts with NET (n = 9) and olfactory neuroblastoma (ONB, n = 5). Additionally, quantitative statistical analysis of PET parameters including SUVmax, total lesion uptake (TLU), and total tumor volume (TTV), was conducted. Results The nnUNet AI model achieved an average 5-fold validation dice similarity coefficient of 0.84 at the scan level. The model achieved dice similarity coefficients (DSC) of 0.88, 0.6, and 0.67 at the scan level, the sensitivity of 86%, 61.13%, and 61.64%, and a positive predictive value of 89%, 74%, and 86.54% at the lesion level for the PPGL test, NET and ONB cohorts, respectively. For PPGL cohorts, smaller lesions with low uptake were missed by the AI model (p < 0.001). Anatomical region-based failure analysis showed most of the false negative and false positive lesions within the liver for all the cohorts, mainly due to the high physiologic liver background activity and image noise on 68Ga- DOTATATE PET scans. Conclusions The developed deep learning-based AI model showed reliable performance for automated segmentation of metastatic PPGL lesions on whole-body 68Ga-DOTATATE-PET/CT images, which may be beneficial for tumor burden estimation for objective evaluation during therapy follow-up. https://www.clinicaltrials.gov/study/NCT03206060, https://www.clinicaltrials.gov/study/NCT04086485, https://www.clinicaltrials.gov/study/NCT05012098.
Lymphoma, encompassing a wide spectrum of immune system malignancies, presents significant complexities in its early detection, management, and prognosis assessment since it can mimic post-infectious/inflammatory diseases. The heterogeneous nature of lymphoma makes it challenging to definitively pinpoint valuable biomarkers for predicting tumor biology and selecting the most effective treatment strategies. Although molecular imaging modalities, such as positron emission tomography/computed tomography (PET/CT), specifically 18F-FDG PET/CT, hold significant importance in the diagnosis of lymphoma, prognostication, and assessment of treatment response, they still face significant challenges. Over the past few years, radiomics and artificial intelligence (AI) have surfaced as valuable tools for detecting subtle features within medical images that may not be easily discerned by visual assessment. The rapid expansion of AI and its application in medicine/radiomics is opening up new opportunities in the nuclear medicine field. Radiomics and AI capabilities seem to hold promise across various clinical scenarios related to lymphoma. Nevertheless, the need for more extensive prospective trials is evident to substantiate their reliability and standardize their applications. This review aims to provide a comprehensive perspective on the current literature regarding the application of AI and radiomics applied/extracted on/from 18F-FDG PET/CT in the management of lymphoma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.