Background: Propofol (2,6-diisopropylphenol) is used for the induction and maintenance of anesthesia in human and veterinary medicine. Propofol's disadvantages include the induction of respiratory depression and apnea. Here, the authors report a clinically feasible pharmacological solution for reducing propofol-induced respiratory depression via a mechanism that does not interfere with anesthesia. Specifically, they test the hypothesis that the AMPAKINE CX717, which has been proven metabolically stable and safe for human use, can prevent and rescue from propofol-induced severe apnea. Methods: The actions of propofol and the AMPAKINE CX717 were measured via (1) ventral root recordings from newborn rat brainstem-spinal cord preparations, (2) phrenic nerve recordings from an adult mouse in situ working heartbrainstem preparation, and (3) plethysmographic recordings from unrestrained newborn and adult rats.
Results:In vitro, respiratory depression caused by propofol (2 μM, n = 11, mean ± SEM, 41 ± 5% of control frequency, 63 ± 5% of control duration) was alleviated by CX717 (n = 4, 50-150 μM). In situ, a decrease in respiratory frequency (44 ± 9% of control), phrenic burst duration (66 ± 7% of control), and amplitude (78 ± 5% of control) caused by propofol (2 μM, n = 5) was alleviated by coadministration of CX717 (50 μM, n = 5). In vivo, pre-or coadministration of CX717 (20-25 mg/kg) with propofol markedly reduced propofol-induced respiratory depression (n = 7; 20 mg/kg) and propofol-induced lethal apnea (n = 6; 30 mg/kg). Conclusions: Administration of CX717 before or in conjunction with propofol provides an increased safety margin against profound apnea and death. P ROPOFOL (2,6-diisopropylphenol) is used for the induction and maintenance of anesthesia in human and veterinary medicine. Propofol's favorable attributes are its pharmacokinetic properties that result in a rapid, clear emergence. Its disadvantages include the induction of respiratory depression, apnea, and blood pressure reductions.1,2 Furthermore, there are increasing reports
What We Already Know about This Topic• Propofol depresses respiration partly due to the activation of γ-aminobutyric acid receptors within brainstem respiratory center AMPAKINEs effectively alleviates opioid-induced respiratory depression without interfering with analgesia in rodentsWhat This Article Tells Us That Is New Address correspondence to Dr. Greer: University of Alberta, Department of Physiology, Centre for Neuroscience, Women and Children's Health Research Institute, 3-020M Katz Building, Edmonton, Alberta, Canada T6G 2S2. john.greer@ualberta.ca. Information on purchasing reprints may be found at www.anesthesiology.org or on the masthead page at the beginning of this issue. Anesthesiology's articles are made freely accessible to all readers, for personal use only, 6 months from the cover date of the issue.