Recent advancements in computational technologies have enhanced the importance of meteorological modeling, driven by an increased reliance on weather-dependent systems. This research implemented a lightning data assimilation technique to improve short-term weather forecasts in South America, potentially refining initialization methods used in meteorological operation centers. The main goal was to implement and enhance a data assimilation algorithm integrating lightning data into the WRF model, assessing its impact on forecast accuracy. Focusing on southern Brazil, a region with extensive observational infrastructure and frequent meteorological activity, this research utilized several data sources: precipitation data from the National Institute of Meteorology (INMET), lightning data from the Brazilian Lightning Detection Network (BrasilDAT), GOES-16 satellite images, synoptic weather charts from the National Institute for Space Research (INPE), and initial conditions from the GFS model. Employing the WRF-ARW model version 3.9.1.1 and WRFDA system version 3.9.1 with 3DVAR methodology, the study conducted three experimental setups during two meteorological events to evaluate the assimilation algorithm. These included a control (CTRL) without assimilation, a lightning data assimilation (LIGHT), and an adaptive humidity threshold assimilation (ALIGHT). Results showed that the lightning data assimilation system enhanced forecasts for large-scale systems, especially with humidity threshold adjustments. While it improved squall line timing and positioning, it had mixed effects when convection was thermally driven. The lightning data assimilation methodology represents a significant contribution to the field, indicating that using such alternative data can markedly improve short-term forecasts, benefiting various societal sectors.