“…To identify nitrotyrosine sites, various large-scale proteomic studies are widely adopted in numerous organisms, including Bacillus licheniformis , Bacillus subtilis , Bos taurus , Bungarus multicinctus , Capsella bursa-pastoris , Carica papaya , Cricetulus migratorius , Enterobacteria phage fd , Escherichia phage lambda , Enterobacteria phage T4 , Enterococcus faecalis , Escherichia coli , Fusarium oxysporum , Halobacterium salinarum , Hirudo medicinalis , Homo sapiens , Mus musculus , Naja atra , Naja melanoleuca , Neurospora crassa , Ophiophagus hannah , Oryctolagus cuniculus , Ovis aries , Finegoldia magna , Phascolopsis gouldii , Physeter catodon , Pseudomonas putida , Rattus norvegicus , Rhodococcus rhodochrous , Saccharomyces cerevisiae , Schizophyllum commune , Staphylococcus aureus , Streptomyces albogriseolus , Struthio camelus , Sus scrofa , Thermus thermophilus , Tobacco mosaic virus , and Protobothrops flavoviridis [ 1 , 7 , 8 , 10 , 14 , 15 ]. Despite the increasing number of experimentally identified nitrotyrosine sites, the mechanism of site-specific nitration modifications on tyrosine still remains largely unknown, possibly because of the constraints of measurement technologies [ 3 , 12 , 13 ]. On the other hand, experimental verification of nitrotyrosine sites is time-consuming, labor-intensive, and sometimes biased toward the abundant proteins.…”