In this article, polyaniline (PANI) was conformally coated on epoxide‐functionalized buckypaper (EBP). Because of the presence of epoxide functional groups, chemical interactions occurred between oxygen in the epoxide groups and NH in the PANI. These chemical interactions were identified by peak shifts and intensity changes in Raman spectra. Additionally, crystalline peaks were clearly observed through X‐ray diffraction. However, Raman peak changes or crystalline peaks were not observed in nonfunctionalized buckypaper (purified pristine buckypaper [PPBP])‐based composites. Both hydrogen bonding and crystalline nature of EBP‐PANI enhanced its electrical conductivity, producing a specific capacitance better than that of PPBP‐PANI. Finally, Ag nanoparticles (AgNPs) were applied to EBP‐PANI to further enhance its electrical conductivity. Owing to the presence of AgNPs and their interactions with the N in PANI, the specific capacitance of EBP‐PANI‐AgNP reached 915.62 F/g. These results emphasize the positive effect of chemical interactions and crystalline nature of EBP‐based composites on their electrochemical performance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48164.