In this paper, a sensitive atomic emission spectrometer (AES) based on a new low power and low argon consumption (<8 W, 100 mL min) miniature direct current (dc) atmospheric pressure glow discharge (APGD) plasma (3 mm × 5 mm) excitation source was developed for the determination of arsenic in water samples. In this method, arsenic in water was reduced to AsH by hydride generation (HG), which was then transported to the APGD source for excitation and detected by a compact CCD (charge-coupled device) microspectrometer. Different parameters affecting the APGD and the hydride generation reactions were investigated. The detection limit for arsenic with the proposed APGD-AES was 0.25 μg L, and the calibration curves were found to be linear up to 3 orders of magnitude. The proposed method was successfully applied to the determination of certified reference material (GBW08605), tap water, pond water, groundwater, and hot spring samples. Measurements from the APGD analyzer showed good agreement with the certified value/values obtained with well-established hydride generation atomic fluorescence spectrometry (HG-AFS). These results suggest that the developed robust, cost-effective, and fast analyzer can be used for field based arsenic determination and may provide an important tool for arsenic contamination and remediation programs.