Highlights Measure-correlate-predict approach based on bivariate Weibull probability tested at 22 sites Deviations from ideal bivariate Weibull behaviour investigated using observed and artificial data Error metrics calculated using 120 test periods over an 11 year data record Performance compared to existing regression methods using variable onsite measurement periods Keywords: measure-correlate-predict, wind resource assessment, bivariate Weibull distribution Abstract A detailed investigation of a measure-correlate-predict (MCP) approach based on the bivariate Weibull (BW) probability distribution of wind speeds at pairs of correlated sites has been conducted. Since wind speeds are typically assumed to follow Weibull distributions, this approach has a stronger theoretical basis than widely used regression MCP techniques. Building on previous work that applied the technique to artificially generated wind data, we have used long-term (11 year) wind observations at 22 pairs of correlated UK sites. Additionally, 22 artificial wind data sets were generated from ideal BW distributions modelled on the observed data at the 22 site pairs. Comparison of the fitting efficiency revealed that significantly longer data periods were required to accurately extract the BW distribution parameters from the observed data, compared to artificial wind data, due to seasonal variations. The overall performance of the BW approach was compared to standard regression MCP techniques for the prediction of the 10 year wind resource using both observed and artificially generated wind data at the 22 site pairs for multiple short-term measurement periods of 1-12 months. Prediction errors were quantified by comparing the predicted and observed values of mean wind speed, mean wind power density, Weibull shape factor and standard deviation of wind speeds at each site. Using the artificial wind data, the BW approach outperformed the regression approaches for all measurement periods.When applied to the real wind speed observations however, the performance of the BW approach was comparable to the regression approaches when using a full 12 month measurement period and generally worse than the regression approaches for shorter data periods. This suggests that real wind observations at correlated sites may differ from ideal BW distributions and hence regression approaches, which require less fitting parameters, may be more appropriate, particularly when using short measurement periods.