BACKGROUND:Currently, combines and tractors, being the most energy-intensive transport and technological machines for agricultural purposes, largely determine the possibility of transition to an efficient and environmentally friendly agricultural economy, and also provide the technical aspect of the transformation of the agro-industrial complex into the leading sector of the countrys industry. One of the sources of dynamic loads in the units and subsystems of tractor equipment are self-oscillating modes.
AIMS:Study of the conditions for the occurrence of self-oscillating processes in the design of wheeled tractor trains and development of methods to increase the handling and safety of their movement by means of reducing the galloping and yawing of the tractor-tractor when towing heavy loads.
METHODS:It has been established that due to the coupling of oscillations along the longitudinal displacement of a truck tractor and a trailer with oscillations along the vertical displacement of the center of mass and with pitch angle oscillations of the truck tractor, when an auto-oscillatory mode occurs in the interaction zone of an elastic wheel with a solid surface, the same mode of self-oscillation will occur along the mentioned degrees of freedom. Moreover, it is possible to specify the sequence of occurrence of self-oscillating modes in different zones of the tractor train design.
RESULTS:First, self-oscillations are excited in the contact patch of a wheel with a solid surface when a complete slip occurs, then self-oscillations along the pitch angle of a truck tractor body begin and after that self-oscillations along the vertical displacement of the center of mass of a truck tractor occur. Folding angle oscillations of a tractor train are associated with oscillations of the translational motion of wheel centers, which lead to the emergence of an self-oscillating mode, both with partial and full slip in the interaction zone of an elastic tire with a solid surface. Since the self-oscillations of each of the wheels occur at random times, the self-oscillations of a truck tractor along the folding angle will be chaotic.
CONCLUSIONS:The practical value of the study lies in the possibility of using the proposed methods to identify the danger of self-oscillating processes in the design of promising types of agricultural machinery.