Adsorption and desorption of L-tryptophan (L-trp) on strong acid cation exchange resin were investigated in a fixed-bed column. L-trp was effectively adsorbed onto the resin HZ-001, with the loading capacity and breakthrough time determined. Four kinetic models, including Adams-Bohard, Wolborska, Thomas, and Yoon-Nelson models, were adopted to determine the kinetic parameters of adsorption and to predict the breakthrough curves. The results showed that the models used described the breakthrough well. Desorption of L-trp from the column bed was performed using aqueous ammonia as the eluant. Optimum procedure was obtained with 2.0 M aqueous ammonia at the elution velocity of 6 BV/h. Five cycles of adsorption-elution-regeneration were conducted to evaluate the column reutilization.