Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Adsorption using biochar is a high-efficient method for removing dyes from wastewater, and it has become a hot research topic in recent years. Biochar produced from organic wastes through pyrolysis is a promising way to combine bioenergy recovery and dye removal. In this study, durian shell (DS) was used as a feedstock for biochar and bio-oil production under different pyrolysis temperatures (400, 500, and 600 °C) for bioenergy recovery. Then, the biochar was applied as the absorbent for methylene blue (MB) removal from wastewater under batch and continuous experiments. It was found that the bio-oil production was slightly affected by temperature, while the productivity of biochar decreased from 42.05% to 30.65% with the increase in pyrolysis temperature from 400 to 600 °C. Compared with the biochar produced at 500 °C (DS-500) and 600 °C (DS-600), the biochar obtained at 400 °C (DS-400) exhibited higher MB removal efficiency and adsorption capacity under various pH conditions due to the superior microstructure. A high pH condition was beneficial for the adsorption process with DS-400. Additionally, the MB removal efficiencies increased with the increase in biochar dosage by providing more activated sites. A high MB content can promote the adsorption process, but a too high MB content negatively affects the removal efficiency due to the sorption saturation. Adsorption processes are more likely to match a pseudo-second-order model by chemical reactions. In the long-term continuous experiment, MB can be effectively removed to match the discharge standard by DS-400. This study provided a sustainable pathway for organic waste disposal and dye wastewater treatment.
Adsorption using biochar is a high-efficient method for removing dyes from wastewater, and it has become a hot research topic in recent years. Biochar produced from organic wastes through pyrolysis is a promising way to combine bioenergy recovery and dye removal. In this study, durian shell (DS) was used as a feedstock for biochar and bio-oil production under different pyrolysis temperatures (400, 500, and 600 °C) for bioenergy recovery. Then, the biochar was applied as the absorbent for methylene blue (MB) removal from wastewater under batch and continuous experiments. It was found that the bio-oil production was slightly affected by temperature, while the productivity of biochar decreased from 42.05% to 30.65% with the increase in pyrolysis temperature from 400 to 600 °C. Compared with the biochar produced at 500 °C (DS-500) and 600 °C (DS-600), the biochar obtained at 400 °C (DS-400) exhibited higher MB removal efficiency and adsorption capacity under various pH conditions due to the superior microstructure. A high pH condition was beneficial for the adsorption process with DS-400. Additionally, the MB removal efficiencies increased with the increase in biochar dosage by providing more activated sites. A high MB content can promote the adsorption process, but a too high MB content negatively affects the removal efficiency due to the sorption saturation. Adsorption processes are more likely to match a pseudo-second-order model by chemical reactions. In the long-term continuous experiment, MB can be effectively removed to match the discharge standard by DS-400. This study provided a sustainable pathway for organic waste disposal and dye wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.