Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper presents mathematical and experimental models developed for the prediction of thermal interactions of an automobile passenger with the cabin environment and a ventilated seat. The mathematical model developed in this work employs existing and modified human-body heat balance equations along with variable thermo-physical environmental conditions. The model predicts steady-state and transient variations of passenger skin and seat-surface temperatures with time before and after activating the seat ventilation system for the given and selected cabin air conditions and heated seat temperature. In calculating the temperature changes with time after activating the ventilated-seat system, the modified heat balance equation along with the numerical analysis using the CFD package (Fluent, v.6) has been iteratively used, in which appropriate air-side average heat transfer coefficients were determined by using the Reynolds and Nusselt analogies for various system operating conditions. An experimental chamber was built to simulate the vehicle air and seat conditions attainable during a hot summer day. A selected number of individuals have participated in the experiments. Passengers' skin and seat-surface temperatures were measured with time after activating the ventilated-seat system for various chamber conditions. Investigation of the results obtained from the mathematical model and the experimental work showed that the seat ventilation system proposed in this work is able to provide the passenger thermal comfort initiation within about 2-3 minutes after activating the seat ventilation system. It was also found that the mathematical model developed in this work needs to be improved in order to include the non-uniform chamber air and seat conditions. The additional detailed experimental works are also required to quantify the passengers' thermal responses along with various chamber conditions.
This paper presents mathematical and experimental models developed for the prediction of thermal interactions of an automobile passenger with the cabin environment and a ventilated seat. The mathematical model developed in this work employs existing and modified human-body heat balance equations along with variable thermo-physical environmental conditions. The model predicts steady-state and transient variations of passenger skin and seat-surface temperatures with time before and after activating the seat ventilation system for the given and selected cabin air conditions and heated seat temperature. In calculating the temperature changes with time after activating the ventilated-seat system, the modified heat balance equation along with the numerical analysis using the CFD package (Fluent, v.6) has been iteratively used, in which appropriate air-side average heat transfer coefficients were determined by using the Reynolds and Nusselt analogies for various system operating conditions. An experimental chamber was built to simulate the vehicle air and seat conditions attainable during a hot summer day. A selected number of individuals have participated in the experiments. Passengers' skin and seat-surface temperatures were measured with time after activating the ventilated-seat system for various chamber conditions. Investigation of the results obtained from the mathematical model and the experimental work showed that the seat ventilation system proposed in this work is able to provide the passenger thermal comfort initiation within about 2-3 minutes after activating the seat ventilation system. It was also found that the mathematical model developed in this work needs to be improved in order to include the non-uniform chamber air and seat conditions. The additional detailed experimental works are also required to quantify the passengers' thermal responses along with various chamber conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.