Detached plasma formation is a way to reduce the heat load on the wall in magnetic fusion devices. This study proposes a novel analysis technique consisting of the conditional averaging, sliding window, and tomography to reveal the spatiotemporal behavior of the rotating radial ejection event of detached plasma, which further contributes to local heat load reduction. The used equipment is a high-speed camera and an electrostatic probe located at the periphery of the linear plasma device NAGDIS-II. By applying this method, four-dimensional (4D) behavior of the emission structure along time (1D) and space perpendicular and parallel to the magnetic field (3D) was clarified; a rotating distorted structure appears as a precursor, which is then scraped and transported radially and axially. The proposed method is widely applicable to short-term rigid-body rotating structures, especially in linear plasmas.