Video analysis often begins with background subtraction, which consists of creation of a background model that allows distinguishing foreground pixels. Recent evaluation of background subtraction techniques demonstrated that there are still considerable challenges facing these methods. Processing per-pixel basis from the background is not only time-consuming but also can dramatically affect foreground region detection, if region cohesion and contiguity is not considered in the model. We present a new method in which we regard the image sequence to be made up of the sum of a low-rank background matrix and a dynamic tree-structured sparse matrix, and solve the decomposition using our approximated Robust Principal Component Analysis method extended to handle camera motion. Furthermore, to reduce the curse of dimensionality and scale, we introduce a low-rank background modeling via Column Subset Selection that reduces the order of complexity, decreases computation time, and eliminates the huge storage need for large videos.