This paper proposes a new adaptive algorithm for the second-order blind signal separation (BSS) problem with convolutive mixtures by utilising a combination of an accelerated gradient and a conjugate gradient method. For each iteration of the adaptive algorithm, the search point and the search direction are obtained based on the current and the previous iterations. The algorithm efficiently calculates the step size for the accelerated conjugate gradient algorithm in each iteration. Simulation results show that the proposed accelerated conjugate gradient algorithm with optimal step size converges faster than the accelerated descent algorithm and the steepest descent algorithm with optimal step size while having lower computational complexity. In particular, the number of iterations required for convergence of the accelerated conjugate gradient algorithm is significantly lower than the accelerated descent algorithm and the steepest descent algorithm. In addition, the proposed system achieves improvement in terms of the signal to interference ratio and signal to noise ratio for the dominant speech outputs.