In the present global context, continuous blood pressure (BP) monitoring is paramount in addressing the global mortality rates attributed to hypertension. Achieving precise insights into the human cardiovascular system necessitates accurate measurement of BP, and the accuracy depends on the faithful recording of oscillations or pulsations. This task ultimately depends on the caliber of the pressure sensor embedded in the BP device. In this context, we have fabricated a flexible resistive pressure sensor based on reduced graphene oxide (rGO) and a polydimethylsiloxane (PDMS) sponge that is highly flexible and sensitive. The designed device operates effectively with a minimal bias voltage of 500 mV, at which point it showed its maximum relative change in current, reaching approximately 25%. Additionally, the sensing device showed a notable change in resistance values, exhibiting almost 100% change in resistance when subjected to a pressure of 400 mmHg and high sensitivity of 0.27 mmHg −1 . After promising outcomes were obtained during static pressure measurement, the sensor was used for BP monitoring in humans. The sensor accurately traced the oscillometric waveform (OMW) for distinct systolic blood pressure (SBP) and diastolic blood pressure (DBP) combinations to cover a range of medical situations, including hypotension, standard or normal, and hypertension. The values of SBP, DBP, and MAP were derived from the sensor's output using the MAA technique, and the errors in these values concerning the simulator and the traditional BP monitor follow the universal AAMI/ESH/ISO protocols. Bland-Altman (B&A) correlation and scatter plots were used to compare the sensor's results and further validate the proposed sensor. The sensor showed the mean and standard deviation error in the SBP, DBP, and MBP of −0.2 ± 5.9, −0.5 ± 7, and −0.9 ± 4.7 mmHg when compared with the noninvasive blood pressure (NIBP) simulator. The pulse rate (PR) was also calculated from the same OMW for the specified value of 80 beats per minute (bpm) given by the simulator and reported a mean PR value of ∼81 bpm, close to the reference value. The findings show that the flexible resistive sensing device can accurately measure BP and replace the existing sensors of BP devices.