2006
DOI: 10.1016/j.apcata.2006.01.028
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of catalyst library optimization algorithms: Comparison of the Holographic Research Strategy and the Genetic Algorithm in virtual catalytic experiments

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
21
0
2

Year Published

2007
2007
2011
2011

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 23 publications
(23 citation statements)
references
References 10 publications
0
21
0
2
Order By: Relevance
“…The response surfaces were obtained by calculating the response of the final GP model through varying the two factors within their range, whilst keeping other three factors to have the optimal values as given in the previous paragraph. It should be noted that it is possible to illustrate a high dimensional response surface using two-dimensional plots, such as the holographic map adopted in [6,41]. (Fig.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…The response surfaces were obtained by calculating the response of the final GP model through varying the two factors within their range, whilst keeping other three factors to have the optimal values as given in the previous paragraph. It should be noted that it is possible to illustrate a high dimensional response surface using two-dimensional plots, such as the holographic map adopted in [6,41]. (Fig.…”
Section: Resultsmentioning
confidence: 99%
“…Given the large amount of data, a proper DoE and data-based modelling methodology is crucial to guide the search for optimal catalysts. Some afore reviewed computational procedures, such as ANN, SVM and their combination with genetic algorithm, have been adopted and adapted to aid catalyst design [4,17,18,[40][41][42]. In this paper, we will focus on the situation where HTE is not available, as is the case in many traditional laboratories or industrial processes, and thus a relatively small amount of data can be collected.…”
Section: Introductionmentioning
confidence: 99%
“…[92] Another approach to multiparameter modeling and optimization is the holographic research strategy (HRS) developed by Margitfalvi and co-workers. The authors [93] compared the performance of a genetic algorithm approach to the HRS to find an optimal material composition in a multidimensional search space. Similar to GAs, HRSs can be used for library design, predictions in materials synthesis, and functional optimization.…”
Section: Combinatorial Materials Researchmentioning
confidence: 99%
“…[92] Ein alternativer Ansatz zur Multiparameter-Modellierung und Optimierung ist die "Holographic Research Strategy" (HRS) von Margitfalvi und Mitarbeitern. [93] Die Autoren verglichen die Leistung eines GA mit der einer HRS, um eine optimale Materialzusammensetzung in einem multidimensionalen Suchraum zu finden. ¾hnlich wie ein GA kann eine HRS zum Bibliotheks-Design, zur Prognosenstellung in der Materialsynthese sowie zu funktionalen Optimierungen eingesetzt werden.…”
Section: Kombination Von Ga Und Annunclassified
“…Dabei wurden Katalysatoren verwendet, die aus Pt, Pd, Au auf Ce-, Co-, Zr-, Cr-, La-und Cu-Mischoxid-Trägermaterialien für die ersten beiden Reaktionen und Na, S, W, P, Zr und Mn auf SiO 2 für die Kupplungsreaktion bestanden. [93][94][95] In allen Fällen wurden sehr ähnliche optimierte Katalysatoren erzielt, wobei die HRS hier anscheinend nur halb so viele Proben benötigte, um zum Optimum zu konvergieren. Eine Nutzung von HRS durch andere Forschergruppen steht noch aus.…”
Section: Kombination Von Ga Und Annunclassified