Vascular problems increase Alzheimer's disease (AD) risk, but the nature of this relationship remains unclear. Older adults having genetic risk for AD show regionally increased functional magnetic resonance imaging (fMRI) activity during memory, possibly representing compensation for a genetically induced neural deficit. We investigated whether vascular health risks, which similarly could lead to neuropsychological deficits, also showed increased fMRI activity during a memory task performed by 30 cognitively intact, primarily normotensive older adults (mean age = 61). Vascular risk measures included systolic blood pressure (sBP), body mass index (BMI), and total cholesterol. Higher sBP and BMI (but not total cholesterol) were significantly correlated with increased activation in posterior cingulate cortex and frontal, temporal, and parietal regions. In posterior cingulate and parietal cortices, these relationships were evident even within sBP and BMI ranges considered normal, and were independent of hippocampal volume. Our results are similar to those in prior AD risk research, and suggest that fMRI reveals an abnormal response to cognitive processes in cognitively intact older adults with increased vascular risk.