Purpose
No attempts were made to analyze the diversity in soil and plant biology of wild cotton species (WCS) and cultivated cotton species (CCS), so far. Our study aimed to understand the differences in soil biological, plant biochemistry, and defense enzyme activities among the ten WCS and four CCS.
Methods
We studied the differences in soil biology, plant biochemistry, and defense enzyme activities among the ten WCS (Gossypium anomalum, G. aridum, G. australe, G. barbosanum, G. capitis-virides, G. davidsonii, G. raimondii, G. somalense, G. stocksii, G. thurberi) and four CCS (G. arboreum, G. herbaceum, G. hirsutum, and G. barbadense).
Results
CCS had 11%, 2%, and 10% higher soil respiration rate, microbial biomass carbon, and microbial metabolic quotient, respectively, compared to WCS. While, WCS had 45%, 15%, and 5% higher glomalin, soil polysaccharide, proteins, respectively, compared to CCS. WCS had 45%, 13%, 8%, and 13% higher acid and alkaline phosphatase, β-glucosidase, and soil dehydrogenase activities, respectively, compared to CCS. WCS had higher carbohydrates in the shoot (40%) and root (27%), while, CCS recorded higher proteins in the shoot (13%) and root (13%). WCS had significantly higher polyphenol oxidase (4% and 15%), peroxidase (30% and 31%), and catalase (36% and 31%) activities in shoots and root tissues, respectively, compared with CCS, while, WCS had higher phenol concentrations (4%) than CCS.
Conclusion
Our study suggests that the difference in soil biological, plant biochemistry, and defense enzyme activities among the WCS and CCS can be attributed to the inherent genetic makeup, which influences consequent plant and soil attributes.