Link to publication
Citation for published version (APA):Reijnders, L. (2010). Design issues for improved environmental performance of dye-sensitized and organic nanoparticulate solar cells. Journal of cleaner production, 18(4), 307-312. DOI: 10.1016/j.jclepro.2009.10.021
General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).
Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
a b s t r a c tThough environmental improvement has been claimed for the application of nanotechnology to solar cells, several characteristics of the fullerene-based organic, and the dye-sensitized nanoparticulate, solar cell are not conducive to such improvement. These include relatively high energy and materials inputs in the production of nanoparticles, a relatively low solar radiation to electricity conversion efficiency, a relatively short service life, the use of relatively scarce metals and relatively poor recyclability, if compared with the multicrystalline Si solar cell which currently is the market leader. Moreover, the lack of data and the inability of current methods to handle hazards of nanoparticles generate problems in conducting comparative life cycle assessment of nanoparticulate solar cells. So far, the claimed environmental advantage can not be substantiated for fullerene-based and dye-sensitized nanoparticulate solar cells. There are options for the environmental improvement of these nanoparticulate solar cells, but actual development does not seem to focus on environmental improvement.