Characterization of manufacturing processes is key to understanding the effects of process parameters on process performance and product quality. These studies are generally conducted using small-scale model systems. Because of the importance of the results derived from these studies, the small-scale model should be predictive of large scale. Typically, small-scale bioreactors, which are considered superior to shake flasks in simulating large-scale bioreactors, are used as the scale-down models for characterizing mammalian cell culture processes. In this article, we describe a case study where a cell culture unit operation in bioreactors using one-sided pH control and their satellites (small-scale runs conducted using the same post-inoculation cultures and nutrient feeds) in 3-L bioreactors and shake flasks indicated that shake flasks mimicked the large-scale performance better than 3-L bioreactors. We detail here how multivariate analysis was used to make the pertinent assessment and to generate the hypothesis for refining the existing 3-L scale-down model. Relevant statistical techniques such as principal component analysis, partial least square, orthogonal partial least square, and discriminant analysis were used to identify the outliers and to determine the discriminatory variables responsible for performance differences at different scales. The resulting analysis, in combination with mass transfer principles, led to the hypothesis that observed similarities between 15,000-L and shake flask runs, and differences between 15,000-L and 3-L runs, were due to pCO2 and pH values. This hypothesis was confirmed by changing the aeration strategy at 3-L scale. By reducing the initial sparge rate in 3-L bioreactor, process performance and product quality data moved closer to that of large scale.