Publisher's copyright statement: c 2012 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Additional information:Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Abstract-An economical way to manage demand-side energy storage systems in the smart grid is proposed by using an Hoo design. The proposed design can adjust the stored energy state economically according to the price signal, while tolerating a certain degree of system uncertainty and having physical constraints on the stored energy level satisfied. Roughly speaking, batteries in the proposed design are charged during a low-price period while being discharged during a high-price period for cost control. Simulations show that the proposed energy storage system can meet the real-time power demand and save money in the long term in contrast to energy storage systems using constant-state schemes.