2021
DOI: 10.1016/j.strusafe.2021.102133
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of correlation between engineering demand parameters of structures for seismic system reliability analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
38
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 14 publications
(38 citation statements)
references
References 31 publications
0
38
0
Order By: Relevance
“…To facilitate calculation of the joint failure probability using Equation (), Kang et al 21 . derived the correlation coefficient ρFiFj${\rho _{{F_i}{F_j}}}$ as ρFiFjbadbreak=bibjσtrueSâiσtrueSâjbi2σtrueSâi2+σψi2bj2σtrueSâj2+σψj2ρSâiSâjgoodbreak+σψiσψjbi2σtrueSâi2+σψi2bj2σtrueSâj2+σψj2ρψiψj\begin{equation} {\rho}_{{F}_{i}{F}_{j}}=\frac{{b}_{i}{b}_{j}{\sigma}_{{\widehat{{S}_{a}}}_{i}}{\sigma}_{{\widehat{{S}_{a}}}_{j}}}{\sqrt{{b}_{i}^{2}{\sigma}_{{\widehat{{S}_{a}}}_{i}}^{2}+{\sigma}_{{\psi}_{i}}^{2}}\sqrt{{b}_{j}^{2}{\sigma}_{{\widehat{{S}_{a}}}_{j}}^{2}+{\sigma}_{{\psi}_{j}}^{2}}}{\rho}_{{\widehat{{S}_{a}}}_{i}{\widehat{{S}_{a}}}_{j}}+\frac{{\sigma}_{{\psi}_{i}}{\sigma}_{{\psi}_{j}}}{\sqrt{{b}_{i}^{2}{\sigma}_{{\widehat{{S}_{a}}}_{i}}^{2}+{\sigma}_{{\psi}_{i}}^{2}}\sqrt{{b}_{j}^{2}{\sigma}_{{\widehat{{S}_{a}}}_{j}}^{2}+{\sigma}_{{\psi}_{j}}^{2}}}{\rho}_{{\psi}_{i}{\psi}_{j}} \end{equation}where σSâi${\sigma _{{{\widehat {{S_a}}}_i}}}$, σSâj${\sigma _{{{\widehat {{S_a}}}_j}}}$, …”
Section: Theoretical Backgroundmentioning
confidence: 99%
See 4 more Smart Citations
“…To facilitate calculation of the joint failure probability using Equation (), Kang et al 21 . derived the correlation coefficient ρFiFj${\rho _{{F_i}{F_j}}}$ as ρFiFjbadbreak=bibjσtrueSâiσtrueSâjbi2σtrueSâi2+σψi2bj2σtrueSâj2+σψj2ρSâiSâjgoodbreak+σψiσψjbi2σtrueSâi2+σψi2bj2σtrueSâj2+σψj2ρψiψj\begin{equation} {\rho}_{{F}_{i}{F}_{j}}=\frac{{b}_{i}{b}_{j}{\sigma}_{{\widehat{{S}_{a}}}_{i}}{\sigma}_{{\widehat{{S}_{a}}}_{j}}}{\sqrt{{b}_{i}^{2}{\sigma}_{{\widehat{{S}_{a}}}_{i}}^{2}+{\sigma}_{{\psi}_{i}}^{2}}\sqrt{{b}_{j}^{2}{\sigma}_{{\widehat{{S}_{a}}}_{j}}^{2}+{\sigma}_{{\psi}_{j}}^{2}}}{\rho}_{{\widehat{{S}_{a}}}_{i}{\widehat{{S}_{a}}}_{j}}+\frac{{\sigma}_{{\psi}_{i}}{\sigma}_{{\psi}_{j}}}{\sqrt{{b}_{i}^{2}{\sigma}_{{\widehat{{S}_{a}}}_{i}}^{2}+{\sigma}_{{\psi}_{i}}^{2}}\sqrt{{b}_{j}^{2}{\sigma}_{{\widehat{{S}_{a}}}_{j}}^{2}+{\sigma}_{{\psi}_{j}}^{2}}}{\rho}_{{\psi}_{i}{\psi}_{j}} \end{equation}where σSâi${\sigma _{{{\widehat {{S_a}}}_i}}}$, σSâj${\sigma _{{{\widehat {{S_a}}}_j}}}$, …”
Section: Theoretical Backgroundmentioning
confidence: 99%
“…Kang et al 21 . proposed to estimate the EDP residual correlation ρψiψj${\rho _{{\psi _i}{\psi _j}}}$ using the IDA method.…”
Section: Theoretical Backgroundmentioning
confidence: 99%
See 3 more Smart Citations