Pesticide residue is an increasing concern in rotational crop practices. The pesticide used for the primary crop may re-enter the secondary crop, thus exceeding pesticide levels set by the positive list system (PLS). As such, evaluation of pesticide residue translocated into rotational crops is required for ensuring pesticide safety. In this study, we investigated the residue pattern of diazinon translocated into lettuce as a typical rotational crop in Korea. Diazinon was used to treat greenhouse soil at the maximum annual application rate before crop planting. Diazinon residues in soil and lettuce were investigated using liquid chromatography/tandem mass spectroscopy and a modified quick, easy, cheap, effective, rugged, safe (QuEChERS) method. The limit of quantitation (LOQ) of diazinon was found as 0.005 mg/kg for the plant and soil samples. The recovery of diazinon at the LOQ and 10× the LOQ ranged from 100.2% to 108.7%. The matrix calibration curve showed linearity, with R2 values > 0.998. Diazinon residue in soil dissipated over time after the initial treatment, generating first-order kinetics (R2 = 0.9534) and having a half-life of about 22 days. The uptake ratio (UTR) of diazinon from the soil to the plant ranged from 0.002 to 0.026 over the harvest period. Considering the UTRs, diazinon residue in the edible leaf could exceed the PLS level (0.01 mg/kg) if lettuce is rotated in soil containing >0.357 mg/kg of diazinon. Based on our findings, to comply with the PLS, a 3-month plant-back interval is required following diazinon treatment and/or setting the maximum residue limit of diazinon for lettuce.