2010
DOI: 10.1007/s12206-010-0339-y
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of cyclic plasticity models of multi-surface and non-linear hardening by an energy-based fatigue criterion

Abstract: This study examines the performance of four constitutive models according to capacity in predicting metal fatigue life under proportional and non-proportional loading conditions. These cyclic plasticity models are the multi-surface models of Mroz and Garud, and the non-linear kinematic hardening models of Armstrong-Frederick and Chaboche. The range of abilities of these models is studied in detail. Furthermore, the plastic strain energy under multiaxial fatigue condition is calculated in the cyclic plasticity … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
2
0
1

Year Published

2012
2012
2022
2022

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 26 publications
0
2
0
1
Order By: Relevance
“…En particular, la aleación de material La(Fe,Co,Si)13 posee un efecto magnetocalórico considerable, una temperatura de Curie o de transición manejable en el rango de 250K a 340K, además de una relativamente buena estabilidad mecánica en fatiga [13] [14] [15]. Para la evaluación del esfuerzo termo-mecánico, se utiliza software comercial con el método de análisis por elementos finitos, donde se modela el comportamiento del regenerador magnetocalórico como un material con propiedades visco-plásticas [16] [17]. La resistencia a fatiga (ciclos necesarios para falla) del material se calcula usando el modelo de Morrow para energía disipada en volúmenes definidos.…”
Section: Introductionunclassified
“…En particular, la aleación de material La(Fe,Co,Si)13 posee un efecto magnetocalórico considerable, una temperatura de Curie o de transición manejable en el rango de 250K a 340K, además de una relativamente buena estabilidad mecánica en fatiga [13] [14] [15]. Para la evaluación del esfuerzo termo-mecánico, se utiliza software comercial con el método de análisis por elementos finitos, donde se modela el comportamiento del regenerador magnetocalórico como un material con propiedades visco-plásticas [16] [17]. La resistencia a fatiga (ciclos necesarios para falla) del material se calcula usando el modelo de Morrow para energía disipada en volúmenes definidos.…”
Section: Introductionunclassified
“…Unfortunately, these models are quite complex, and a number of material parameters have to be determined . In the case of non‐proportional loadings, the classical cyclic plasticity models do not work properly . Modifications of these models due to non‐proportionality of loading lead to even higher complexity and even more required material parameters …”
Section: Introductionmentioning
confidence: 99%
“…[22][23][24] In the case of non-proportional loadings, the classical cyclic plasticity models do not work properly. 25,26 Modifications of these models due to non-proportionality of loading lead to even higher complexity and even more required material parameters. 23 The question arises: can experimental methods, other than the measurement of strain or force, be used for the calculation of FDP in a low-cycle fatigue range for a real object?…”
Section: Introductionmentioning
confidence: 99%