Following the rapid and continuous progress of computing power allowing for increasing the mesh resolution in large eddy simulation (LES), new modeling strategies appear which are based on a direct treatment of the now well-resolved, but still not fully-resolved scalar signals. Along this line, deconvolution or inverse filtering, either based on discrete or iterative operators, is first discussed. Recent results obtained from a direct numerical simulation (DNS) database and LES of a premixed turbulent jet flame are presented. The analysis confirms the potential of deconvolution to approximate the unclosed non-linear terms and the SGS fluxes. Then, the introduction of machine learning in turbulent combustion modeling is illustrated in the context of convolutional neural networks.