This review is devoted to understanding the role of elasticity in the main flow modes of polymeric viscoelastic liquids—shearing and extension. The flow through short capillaries is the central topic for discussing the input of elasticity to the effects, which are especially interesting for shear. An analysis of the experimental data made it possible to show that the energy losses in such flows are determined by the Deborah and Weissenberg numbers. These criteria are responsible for abnormally high entrance effects, as well as for mechanical losses in short capillaries. In addition, the Weissenberg number determines the threshold of the flow instability due to the liquid-to-solid transition. In extension, this criterion shows whether deformation takes place as flow or as elastic strain. However, the stability of a free jet in extension depends not only on the viscoelastic properties of a polymeric substance but also on the driving forces: gravity, surface tension, etc. An analysis of the influence of different force combinations on the shape of the stretched jet is presented. The concept of the role of elasticity in the deformation of polymeric liquids is crucial for any kind of polymer processing.