Drug discovery pipelines rely on the availability of isolated primary hepatocytes for investigating potential hepatotoxicity prior to clinical application. These hepatocytes are typically isolated from livers rejected for transplantation and subsequently cryopreserved for later usage. The gold-standard cryopreservation technique, slow-freezing, is a labor-intensive process, with significant post-storage viability loss. In this work, we introduce parallelized droplet vitrification, a technique for high-volumetric, rapid vitrification of suspended cells. We show the utility of this technique through the single-run vitrification of the whole-rate liver hepatocyte yield, resulting in a 1600% increase in single-batch vitrification and a 500% increase in droplet generation rate compared to previous droplet vitrification approaches. Additionally, we showed that these implementations maintained improved post-preservation outcomes in primary rat hepatocytes.