International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007) 2007
DOI: 10.1109/iccima.2007.84
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of Edge Detection Techniques towards Implementation of Automatic Target Recognition

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
8
0
2

Year Published

2010
2010
2023
2023

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 17 publications
(10 citation statements)
references
References 16 publications
0
8
0
2
Order By: Relevance
“…Un segundo paso del proceso, reside en realizar el procedimiento de conteo de pines del dispositivo; este conteo se realizó mediante una detección de bordes, generados por las transiciones de oscuro a claro sobre una línea de identificación, tal como se mostró en la Fig. 2 [31][32][33][34].…”
Section: Proceso De Inspección De Imágenesunclassified
“…Un segundo paso del proceso, reside en realizar el procedimiento de conteo de pines del dispositivo; este conteo se realizó mediante una detección de bordes, generados por las transiciones de oscuro a claro sobre una línea de identificación, tal como se mostró en la Fig. 2 [31][32][33][34].…”
Section: Proceso De Inspección De Imágenesunclassified
“…It is therefore desirable to be able to automatically identify the aircraft model from as little radar information as possible which usually means detecting the aircraft model from only the first pulses that are reflected back from the attacking aircraft. Many schemes of ISAR target recognition have been developed that test only the features taken from the ISAR images with high efficiency, [1]- [4]. This saves the time exhausted while trying to compare the whole target aircraft.…”
Section: Introductionmentioning
confidence: 99%
“…Image segmentation is usually done using various edge detection techniques such as Sobel, Prewitt, Roberts, Canny, and other methods [7]. Then, only some features characterizing the ISAR images are tested, to identify what kind of target has been detected [8]- [11]. In fact, the typical algorithms first detect the edge of an ISAR image, and then adopt different 1-D descriptors such as Fourier descriptors (FD) [12] or 2-D descriptors such as Fourierwavelet descriptors [13] for feature extraction.…”
Section: Introductionmentioning
confidence: 99%