Ge1−xSnx film with Sn content (at%) as high as 13% was grown on Si (100) substrate with Ge buffer layer by magnetron sputtering epitaxy. According to the analysis of HRXRD and Raman spectrum, the quality of the Ge1−xSnx crystal was strongly dependent on the growth temperature. Among them, the GeSn (400) diffraction peak of the Ge1−xSnx film grown at 240 °C was the lowest, which is consistent with the Raman result. According to the transmission electron microscope image, some dislocations appeared at the interface between the Ge buffer layer and the Si substrate due to the large lattice mismatch, but a highly ordered atomic arrangement was observed at the interface between the Ge buffer layer and the Ge1−xSnx layer. The Ge1−xSnx film prepared by magnetron sputtering is expected to be a cost-effective fabrication method for Si-based infrared devices.