The +3 and +2 oxidation states of europium have drastically different magnetic and spectroscopic properties. Electrochemical measurements are often used to probe EuIII/II oxidation state changes, but a full suite of spectroscopic characterization is necessary to demonstrate conversion between these two oxidation states in solution. Here, we report the facile conversion of a EuIII tetraglycinate complex into its EuII analogue. We present electrochemical, luminescence, electron paramagnetic resonance, UV–visible, and NMR spectroscopic data demonstrating complete reversibility from the reduction and oxidation of the +3 and +2 oxidation states, respectively. The EuII-containing analogue has kinetic stability within the range of clinically approved GdIII-containing complexes using an acid-catalyzed dissociation experiment. Additionally, we demonstrate that the +3 and +2 oxidation states provide redox-responsive behavior through chemical exchange saturation transfer or proton relaxation, respectively. These results will be applicable to a wide range of redox-responsive contrast agents and Eu-containing complexes.