This research is geared towards employing modern technology to enhance agricultural productivity through local and mechanized farming systems. The research work involves the construction of a device that controls water flow in an irrigation system most especially, in areas where there is acute shortage of water supply or insufficient rainfall which may be due to climate change resulting or causing draught and other environmental conditions. It is a device that is solar powered, as an alternative source of power supply to the entire irrigation system. The solar power supply consist of two modules or panels, a battery and charge regulator whose function is to control the battery charge and as well supply power to the load (motor) at various weather and soil moisture conditions. The device was tested and it was (is) able to minimize electrical power consumption, with a flow rate of water averaging at 20 liters per minute, due to the pump size and capacity. The humidity of the soil is detected by the soil moisture sensor which determines the voltage levels at which the water pump switches on/off. Also, there is an ultraviolet light sensor that enables the controller to switch off the pump during the period of higher intensity of sunlight, owing to the fact that most crop plants are irritated by water when the sun is very hot. The water pump is a D. C submersible type. An algorithm was designed for the smooth operation of the entire system.