2010
DOI: 10.1016/j.eswa.2010.02.079
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of face recognition techniques using PCA, wavelets and SVM

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
65
0
2

Year Published

2014
2014
2020
2020

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 177 publications
(67 citation statements)
references
References 4 publications
0
65
0
2
Order By: Relevance
“…Selain itu juga ada banyak penelitian yang menerapkan PCA untuk pengenalan wajah menggunakan eigenface ( [7], [14], [15]). Untuk Wavelet sebelumnya beberapa peneliti menerapkan wavelet pada ekstraksi fitur dan membandingkan dengan beberapa basis wavelet ( [5], [16], [17], [18]) dan ada beberapa penelian yang membandingkan ekstraksi fitur pada pengenalan wajah menggunkan PCA dan Wavelet ( [19], [20] …”
Section: Pendahuluanunclassified
“…Selain itu juga ada banyak penelitian yang menerapkan PCA untuk pengenalan wajah menggunakan eigenface ( [7], [14], [15]). Untuk Wavelet sebelumnya beberapa peneliti menerapkan wavelet pada ekstraksi fitur dan membandingkan dengan beberapa basis wavelet ( [5], [16], [17], [18]) dan ada beberapa penelian yang membandingkan ekstraksi fitur pada pengenalan wajah menggunkan PCA dan Wavelet ( [19], [20] …”
Section: Pendahuluanunclassified
“…We remark that recognition accuracy rate of 0.9 is deemed as adequate for real-world face recognition applications [BO08,GKS10] and, following (5.1), our results can be derived for arbitrary recognition accuracy rates.…”
Section: Face Recognition On the Cloudmentioning
confidence: 99%
“…SVM was proposed by Vapnik in 1998 [10]. The hyperplane is found in SVM in which the separation of the largest possible fraction of points of the same class on the same side is obtained and maximization of the distance from either class to the hyperplane is carried out [11].…”
Section: Support Vector Machinementioning
confidence: 99%
“…Separation of two data sets is carried out by searching for an optimal separating hyperplane (OSH) between them in SVM. ''Support vectors" are the bounds between data sets and OSH [10]. The data, that are not linearly separable, are transformed into new space using kernel and OSH is found.…”
Section: Support Vector Machinementioning
confidence: 99%