Electrical resistivity tomography (ERT) has turned out to be one of the most applied and user-friendly geophysical methods in geotechnical and geoenvironmental research. ERT is an emerging technology that is becoming popular nowadays for investigating subsurface conditions. Multiple attributes of the technology using various electrode configurations significantly reduce measurement time and are suitable for applications even in hardly accessible mountain areas. It is a noninvasive test for subsurface characterization and a very sensitive method used to determine geophysical properties, i.e., structural integrity, water content, fluid composition, etc. This paper aimed to elucidate the ERT technique’s main features and applications in geotechnical and geoenvironmental engineering through four case studies. The first case study investigated the possible flow paths and areas of moisture accumulation after leachate recirculation in a bioreactor landfill. The second case study attempted to determine the moisture variation along highway pavement. The third case study explored the slope failure investigation by ERT. The fourth case study demonstrated the efficiency of the ERT method in the landfill evapotranspiration (ET) cover to investigate moisture variation on a broader scale and performance monitoring. In all of the four cases, ERT exhibited promising performance.