To reduce energy consumption and environmental pollution in the construction industry, many countries have focused on the development of green housing (GH), which is a type of green building for residential use. In China, the local governments have introduced various incentive policies to encourage the development of GH; however, its scale is still small and unevenly distributed. This implies a necessity to optimize the policies that apply to the GH incentive. To promote GH diffusion, we built an evolutionary game model on a complex network to analyze the impacts of government policies on GH pricing and demand and the profits of real estate enterprises developing GH. By implementing simulations, we further explored the incentive effect and operational mechanism of the government policies. The results show that the subsidy policy, the preferential policy for GH, and the restriction policy for ordinary housing can effectively promote the diffusion of GH to 0.6752, 0.506, and 0.5137 respectively. Meanwhile, the incentive effect of the enterprise subsidy policy and GH preferential policy gradually decreases with the increase in policy strength. In terms of the demand side, the consumer subsidy policy could promote GH diffusion to 0.7097. If the subsidy is below 120 CNY/m2, the effect of the consumer subsidy policy is less powerful than that of the enterprises subsidy policy; conversely, the former is slightly more effective than the latter. The outcome of the study has managerial implications on governmental decision-making, especially on the strategy design of incentive policies for GH.