The conventional PM ODS Ferritic Steel (FS) processing route includes gas atomisation of steel powder and its mechanical alloying (MA) with Y 2 O 3 powder particles to dissolve yttrium and form, during consolidation, a dispersion of oxide nanoparticles (Y-Ti-O) in a nanostructured matrix. This work presents an alternative route to produce ODS steels avoiding MA: STARS (Surface Treatment of gas Atomized powder followed by Reactive Synthesis). STARS FS powders with composition Fe-14Cr-2W-0.3Ti-0.23Y, already containing the nanoparticles precursors, were gas-atomized. Oxygen, Y and Ti contents were tailored to the required values to form Y-Ti-O nanoparticles during processing. Powders were HIPped at 900, 1220 and 1300°C. Specimens HIPped at 900 and 1220°C were heat treated (HT) at temperatures ranging from 1200 to 1320°C. The microstructural evolution with HIP and HT temperatures, including characterisation of nanoparticles and feasibility of achieving complete dissolution of prior particle boundaries (PPBs) were assessed.