Finding effective and environmentally friendly lubrication to use in sheet metal forming operations presents a substantial environmental and economic challenge to the automotive industry. This paper examines the effectiveness of different lubricants in the reduction of the coefficient of friction (COF) in the process of sheet metal forming of the low carbon steel sheets. These lubricants are based on a combination of boric acid (H3BO3) and edible vegetable oils, both of which are natural and environmentally friendly. To evaluate the friction characteristics of the lubricants in a forming operation, a strip drawing friction test is used. This test consisted in drawing a specimen in the form of a sheet metal strip between two non-rotating counter-samples with radii of 200 and 10 mm. The effectiveness of environmentally friendly lubricants in reducing the COF was compared to the traditional petroleum-based lubricants which are used in sheet metal-forming operations. The effect of lubricant conditions and tool surface roughness on the value of COFs is studied. It was found that palm oil in both configurations of countersample radius, both as pure oil and with the addition of 5 wt.% of H3BO3, was the most effective in lowering the coefficient of friction. In most of the conditions analysed, the addition of boric acid into vegetable oils leads to an increase in the lubrication efficiency by up to 15% compared to pure oils. The effectiveness of lubrication by olive and rapeseed oils in decreasing the frictional resistances clearly depends on the nominal pressure applied.