With the development of science and technology and the need for Multi-Criteria Decision-Making (MCDM), the optimization problem to be solved becomes extremely complex. The theoretically accurate and optimal solutions are often difficult to obtain. Therefore, meta-heuristic algorithms based on multi-point search have received extensive attention. The flower pollination algorithm (FPA) is a new swarm intelligence meta-heuristic algorithm, which can effectively control the balance between global search and local search through a handover probability, and gradually attracts the attention of researchers. However, the algorithm still has problems that are common to optimization algorithms. For example, the global search operation guided by the optimal solution is easy to lead the algorithm into local optimum, and the vector-guided search process is not suitable for solving some problems in discrete space. Moreover, the algorithm does not consider dynamic multi-criteria decision problems well. Aiming at these problems, the design strategy of hybrid flower pollination algorithm for Virtual Network Embedding (VNE) problem is discussed. Combining the advantages of the Genetic Algorithm (GA) and FPA, the algorithm is optimized for the characteristics of discrete optimization problems. The cross operation is used to replace the cross-pollination operation to complete the global search and replace the mutation operation with self-pollination operation to enhance the ability of local search. Moreover, a