2021 North American Power Symposium (NAPS) 2021
DOI: 10.1109/naps52732.2021.9654794
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of Hybrid Commercial Building Models for Grid Interactive Building Simulations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
5
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(5 citation statements)
references
References 12 publications
0
5
0
Order By: Relevance
“…Each building is assumed to be served by a centralised HVAC system with variable air volume (VA) reheat systems. Each thermal zone in each building is modelled using the two‐node equivalent thermal parameters model shown in Equations ()–() and discussed in our previous work [18]. leftrightCi,zdTi,zdt=1Rie,zTe,zTi,z+Qc,z+Qrh,z+QD,z+rightQitalicinfil,z+j=1J1Rj,zTj,zTi,z $\begin{array}{r}\hfill {C}_{i,z}\frac{d{T}_{i,z}}{dt}=\frac{1}{{R}_{ie,z}}\left({T}_{e,z}-{T}_{i,z}\right)+{Q}_{c,z}+{Q}_{rh,z}+{Q}_{D,z}+\\ \hfill {Q}_{\mathit{infil,z}}+\sum\limits _{j=1}^{J}\frac{1}{{R}_{j,z}}\left({T}_{j,z}-{T}_{i,z}\right)\end{array}$ Qc,z=camż()TsTi,z ${Q}_{c,z}={c}_{a}\dot{{m}_{z}}\left({T}_{s}-{T}_{i,z}\right)$ Ce,zdTe,zdt=1Rie,z()Ti,zTe,z+1Rea,z()TaTe,z ${C}_{e,z}\frac{d{T}_{e,z}}{dt}=\frac{1}{{R}_{ie,z}}\left({T}_{i,z}-{T}_{e,z}\right)+\frac{1}{{R}_{ea,z}}\left({T}_{a}-{T}_{e,z}\right)$ …”
Section: Methodsmentioning
confidence: 99%
See 4 more Smart Citations
“…Each building is assumed to be served by a centralised HVAC system with variable air volume (VA) reheat systems. Each thermal zone in each building is modelled using the two‐node equivalent thermal parameters model shown in Equations ()–() and discussed in our previous work [18]. leftrightCi,zdTi,zdt=1Rie,zTe,zTi,z+Qc,z+Qrh,z+QD,z+rightQitalicinfil,z+j=1J1Rj,zTj,zTi,z $\begin{array}{r}\hfill {C}_{i,z}\frac{d{T}_{i,z}}{dt}=\frac{1}{{R}_{ie,z}}\left({T}_{e,z}-{T}_{i,z}\right)+{Q}_{c,z}+{Q}_{rh,z}+{Q}_{D,z}+\\ \hfill {Q}_{\mathit{infil,z}}+\sum\limits _{j=1}^{J}\frac{1}{{R}_{j,z}}\left({T}_{j,z}-{T}_{i,z}\right)\end{array}$ Qc,z=camż()TsTi,z ${Q}_{c,z}={c}_{a}\dot{{m}_{z}}\left({T}_{s}-{T}_{i,z}\right)$ Ce,zdTe,zdt=1Rie,z()Ti,zTe,z+1Rea,z()TaTe,z ${C}_{e,z}\frac{d{T}_{e,z}}{dt}=\frac{1}{{R}_{ie,z}}\left({T}_{i,z}-{T}_{e,z}\right)+\frac{1}{{R}_{ea,z}}\left({T}_{a}-{T}_{e,z}\right)$ …”
Section: Methodsmentioning
confidence: 99%
“…In other words, the mixed air ratio is 0.5. Reference [18] contains a detailed discussion of the fan and chiller models, which the interested reader can consult. Qcool=Qsen,cool+Qlat,cool ${Q}_{\mathit{cool}}={Q}_{\mathit{sen,cool}}+{Q}_{\mathit{lat,cool}}$ Qsen,cool=c()TmixTsfalsetruez=1nmz ${Q}_{\mathit{sen,cool}}=c\left({T}_{\mathit{mix}}-{T}_{s}\right)\sum\limits _{z=1}^{n}{m}_{z}$ Tmix=12()falsetruez=1nTi,zn+Ta ${T}_{\mathit{mix}}=\frac{1}{2}\left(\frac{\sum\limits _{z=1}^{n}{T}_{i,z}}{n}+{T}_{a}\right)$ Qlat,cool=l()HaHsfalsetruez=1nmz ${Q}_{\mathit{lat,cool}}=l\left({H}_{a}-{H}_{s}\right)\sum\limits _{z=1}^{n}{m}_{z}$ Pchiller=cind()a0Ta+a1Ha+a2Qcool ${P}_{\mathit{chiller}}={c}_{\mathit{ind}}\left({a}_{0}{T}_{a}+{a}_{1}{H}_{a}+{a}_{2}{Q}_{\mathit{cool}}\right)$ Pfan=k2falsetruez=1n…”
Section: Methodsmentioning
confidence: 99%
See 3 more Smart Citations